Hybrid approach for Pareto front expansion in heuristics

نویسندگان

  • Haluk Yapicioglu
  • H. Liu
  • Alice E. Smith
  • Gerry V. Dozier
چکیده

Heuristic search can be an effective multi-objective optimization tool; however, the required frequent function evaluations can exhaust computational sources. This paper explores using a hybrid approach with statistical interpolation methods to expand optimal solutions obtained by multiple criteria heuristic search. The goal is to significantly increase the number of Pareto optimal solutions while limiting computational effort. The interpolation approaches studied are kriging and general regression neural networks. This paper develops a hybrid methodology combining an interpolator with a heuristic, and examines performance on several non-linear bi-objective example problems. Computational experience shows this approach successfully expands and enriches the Pareto fronts of multi-objective optimization problems. Journal of the Operational Research Society (2011) 62, 348–359. doi:10.1057/jors.2010.151 Published online 27 October 2010

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for Constructing the Pareto Front of Bi-objective Optimization Problems

Here, scalarization techniques for multi-objective optimization problems are addressed. A new scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. It is shown that we can restrict the parameters of the scalarized problem. The computed efficient points provide...

متن کامل

A New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering

This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...

متن کامل

A Hybrid Solution Approach Based on Benders Decomposition and Meta-Heuristics to Solve Supply Chain Network Design Problem

Supply Chain Network Design (SCND) is a strategic supply chain management problem that determines its configuration. This mainly focuses on the facilities location, capacity sizing, technology selection, supplier selection, transportation, allocation of production and distribution facilities to the market, and so on. Although the optimal solution of the SCND problem leads to a significant reduc...

متن کامل

Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm

Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...

متن کامل

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JORS

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2011